Jobineries

Blogue de Gilles G. Jobin, Gatineau, Québec.

mardi 14 septembre 2004

Bof, les maths...

Mon intervention dans le blogue de Monsieur Guité.

Bonjour,
Je pense que ce n'est pas au deuxième cycle du secondaire qu'il faut supprimer les maths mais bien au premier.

Lieux communs :
C'est en forgeant qu'on devient forgeron.
C'est en faisant des maths qu'on devient mathématicien

Subtilité :
Mais le programme ne demande pas de former des mathématiciens, il demande de développer des compétences à résoudre des problèmes mathématiques.

Paradoxe :
Or si c'est en forgeant que l'on développe des compétences à résoudre des problèmes de forgerons, ce n'est pas en résolvant des problèmes de mathématiciens qu'on développe la compétence à résoudre des problèmes de nature mathématique.

Je crois que c'est une erreur de supposer que par l'étude de concepts généraux, les élèves pourront transposer dans des situations particulières. Pour généraliser des concepts, il faut d'abord en avoir, c'est-à-dire qu'il faut avoir vu plusieurs cas particuliers pour en dégager un principe général utile.

Mais l'école l'exige : les élèves doivent développer des compétences en résolution de problèmes, doivent être capables de jouer avec des concepts abstraits et de communiquer dans un langage mathématique rigoureux. Là où je ne suis plus d'accord, c'est pour dire que la mathématique est l'outil qui convient pour développer ça. Dans l'enseignement des mathématiques, l'élève est pris avec des concepts beaucoup trop abstraits, loin de lui, pour être en mesure de se concentrer sur le raisonnement, la logique et la représentation d'une idée.

C'est dans cet esprit que je propose de remplacer l'enseignement des maths par l'enseignement de la programmation d'applications informatiques car elle permet de se concentrer sur des concepts beaucoup plus contextualisés.

Il ne faut pas oublier qu'on ne peut parler à une machine que dans un langage RIGOUREUX et LOGIQUE. La machine répond immédiatement lorsqu'on lui parle "tout croche" : "Erreur de syntaxe à la ligne 24", "Vous tentez d'additionner deux nombres de types différents", "la fonction XYZ n'existe pas", etc.

L'intérêt principal, pédagogiquement parlant, d'enseigner la programmation plutôt que les maths est le suivant : les concepts qui sont GÉNÉRALISÉS en mathématiques sont CONTEXTUALISÉS en programmation (comme dans la vie d'ailleurs).

Plusieurs exemples me viennent en tête pour expliquer mon point de vue. En voici un :
Prenons le cas des nombres. En programmation (dans les langages fortement typés), on ne peut additionner des entiers avec des réels. La machine nous arrête si on veut faire une telle opération. Regardez maintenant cette petite opération, que plusieurs élèves sauraient répondre facilement et immédiatement :

-10 + 8.


Je suis absolument convaincu que l'ensemble des élèves (et des adultes!) ne comprennent absolument pas le sens de cette question. En effet, un esprit rigoureux NE PEUT y répondre sans d'abord s'en poser plusieurs au préalable. Par exemple, que représente -10? Est-ce un nombre entier ? un nombre rationnel ? Un nombre réel? Même question pour 8. Et l'addition, dans quel contexte se passe-t-elle? Même si plusieurs jugeraient que je coupe les cheveux en quatre ici, c'est n'est absolument pas le cas : j'essaie juste d'être rigoureux. Lorsque je vois -10 +8, je vois des oranges et des pommes. Or, on ne peut additionner des oranges et des pommes, n'est-ce pas? Autrement dit, il faut absolument connaître le contexte dans lequel on doit opérer. À mon avis, si les enfants (et les adultes) éprouvent de la difficulté en mathématique scolaire, c'est tout simplement parce qu'ils ne voient pas les contextes, que ces derniers varient d'un problème à l'autre sans qu'on les en informe. En informatique, les contextes sont habituellement très clairs.

En programmation, on DOIT répondre à toutes les questions de contextualisation posées ci-dessus à propos de -10 + 8 AVANT de pouvoir procéder. Cela est rigueur.

En pseudo-code, cela donne :

VAR A ENTIER
VAR B REEL
A = 10
B = 8


Et si on demande A + B, le système nous sortira une belle erreur du genre : "Vous essayez d'additionner des nombres de types différents". La machine EST rigoureuse, beaucoup plus que plusieurs de nos livres de maths...
Et puis, l'élève qui voudra tout de même procéder à l'addition de ces deux nombres devra "importer" l'entier dans l'univers des réels AVANT de pouvoir additionner.

En informatique, le nombre est une entité concrète. Or, il faut bien comprendre la nature d'un nombre avant d'en généraliser l'idée.

Prenez le cas 20/50 + 40/50. Qu'est-ce que cela signifie ? À mon avis, cela dépend du contexte. Imaginez que ce sont deux examens de maths... on a donc 60 sur 100. Pourtant, dans un contexte très "scolaire", il est mathématiquement clair (en tout cas pour le prof) que la réponse est 60/50. L'élève aura un haussement d'épaule en se disant qu'en maths, tout peut arriver.... Vous me direz qu'en maths, 20/50, ça veut dire "vingt cinquantièmes". Pourtant, cela peut aussi dire 20 DIVISÉ par 50. Et cette division, en est-elle une de contenance ou de partage (combien peut-on faire de paquets de 20 pommes à partir d'un paquet de 50 pommes; on désire partager 20 pommes entre 50 personnes) ? Et si on conçoit cela comme "on a eu 20 points sur 50", alors peut-être comprendrez-vous que l'ÉCRITURE 20/50 peut vouloir dire N'IMPORTE QUOI hors contexte. Donc, une opération aussi simple que 1/2 + 1/3 n'est simple que pour celui qui en connaît le contexte; l'opération demeure sans aucune signification pour les autres. On doit avoir vu 1/2 dans plusieurs contextes avant d'en extraire l'idée pure de 1/2. Ce n'est qu'en voyant ces différents contextes qu'on pourra alors PENSER à généraliser une écriture dont le mathématicien découvrira plein de propriétés. Actuellement, on enseigne abstraitement les fractions en supposant que les élèves transposeront dans des cas particuliers... Or le transfert ne ce fait pas nécessairement ni naturellement. En fait, je pense que ce transfert ne se fait pas du tout. Si on enseignait la programmation plutôt que les math, les fractions seraient nécessairement utilisées dans des contextes particuliers.

Prenons maintenant une autre notion très concrète en informatique : les variables. Lorsque que vous entrez votre code utilisateur ou votre mot de passe dans l'ordinateur, ce texte est tout simplement traité par le programme comme une variable car on ne sait pas ce que l'utilisateur entrera.
Lorsque vous entrez votre score dans un jeu, ce score est en fait traité comme une variable par l'ordinateur.
Lorsque vous faites une requête sur une base de donnée, cette requête traite un ou plusieurs champs de la table comme des variables. Mon avis est qu'il faut qu'un élève puisse voir plusieurs situations concrètes qui "appellent" des variables pour comprendre le concept général de variables, concept qui, lui, est étudié par les mathémaciens. On procède actuellement à l'envers : on pense qu'en étudiant le concept général de variable, l'élève pourra faire des transferts dans sa vie quotidienne. C'est mettre la charrue devant les boeufs.

Prenons un autre exemple : le plan cartésien. Qu'est-ce qu'un écran d'ordinateur, sinon un "genre" de plan cartésien ? Le problème de faire bouger un point sur l'écran (comme dans le fameux jeu PONG) est un problème très intéressant. C'est un problème concret de fonction linéaire. Pour faire déplacer un point sur l'écran, l'élève en fait représentera concrètement une fonction linéaire. En résolvant plusieurs problèmes de ce type, la notion de fonction linéaire émergera et sera signifiante pour l'élève.

La plupart des langages de programmation possèdent aussi des notions de fonctions ou de procédures. Quant un élève aura VÉCU de vraies situations impliquant des fonctions, il pourra sans probleme, et seulement s'il en éprouve le besoin, étudier les fonctions EN GÉNÉRAL.

Voici en pseudo-code, un petit programme.

function bonjour(X)
{
imprime "Bonjour X, j'espere que tu vas bien !"
}

EXÉCUTION
bonjour(Paul)
SautDeLigne
bonjour(Gilles)
SautDeLigne
imprime "BIenvenue à vous deux!"


Je suis convaincu que vous comprenez ce programme. Pas besoin de fonctions trigonométriques, du second degré, etc.... On a du concret devant les yeux.

Aujourd'hui, avec la programmation HTML, le XML, le Javascript, le PHP, le MySql, on a tout pour inciter le développement du raisonnement rigoureux à partir de problèmes très concrets.
Ex.

J'ai une collection de cartes de hockey. J'aimerais pouvoir les trier et faire des sous-collections à partir des données sur les cartes (MySql)
Je joue à Dongeons et dragons et j'aimerais pouvoir créer mes personnages avec un outil informatique (php,mysql)
J'ai à étudier plein de mots en anglais, mais j'arrive pas à les retenir. (Javascript)
J'aimerais faire une page web sur mes intérêts (Html)

La résolution de ces "problèmes" forcera nécessairement un élève à programmer, donc à exprimer sa pensée logiquement et rigoureusement. Et l'élève en sortira avec un produit utile, tout au moins pour lui.

Les mathématiques viennent après des expériences sur les nombres, sur les variables, sur divers plans, sur les fonctions, etc.

Quels sont les l'arguments en faveur de l'enseignement des maths ? D'abord, on entend le "développement de la logique" puis, l'esprit de "rigueur" et souvent, cette sempiternelle "T'en auras besoin dans la vie, TOUT est mathématique." Pour moi, tout cela est de la foutaise.
Comment donc l'apprentissage de l'extraction d'une racine carrée vous a-t-elle aidé à devenir plus logique? En quoi, la factorisation des nombres vous a-t-elle été utile? Et la résolution d'équation du second degré ? Et l'addition de fractions ? Et la notion de nombres négatifs ?
À mon avis, l'enseignement de notions purement mathématiques est inutile et inefficace pour le développement d'un esprit mathématico-logique et rigoureux. La programmation, par contre, remplie très bien cette fonction.

Qu'on ne s'y méprenne pas : j'adore les mathématiques mais je crois sincèrement que l'enseignement de la mathématique au secondaire est obsolète.

mercredi 25 août 2004

CEGEP et le privé

Qui scribit bis legit.


Ma petite dernière a commencé son CEGEP lundi dernier.
- Comment était ton cours de philosophie ?
- C'était super le fun. Mon prof est vraiment bien. On va parler d'étymologie ... Savais-tu que ça vient du latin etumos qui littéralement veut dire sens véritable d'un mot ?. Et, puis, on va parler d'épistémologie.
Et elle continua ainsi à me décrire une partie de son cours. Ce qui me fascina est cette lumière qu'elle avait dans les yeux. La lumière de l'intelligence.
- À un moment donné, comme je dessinais en prenant des notes, mon prof a pris mon dessin, et, là, il l'a regardé. Une quinzaine de secondes. Vraiment. Une quinzaine de secondes. Il n'a pas juste jeté un coup d'oeil dessus et dit c'est beau, il l'a vraiment regardé ! Mon prof, il a fait 4 ans de BD...
Et un peu plus loin dans la conversation :
- Il a dit qu'on nous apprenait à ne pas aimer apprendre. Il nous a dit qu'il n'y avait personne de stupide dans la classe. Et que, tous, on pouvait apprendre, c'était juste une question de motivation. Puis il nous a raconté une histoire, mais je savais que, dans l'fond, c'était son histoire à lui qu'il nous contait...

Je lui ai demandé la liste des livres qu'elle devait acheter.
- Pas de liste ! Dans les autres cours, les profs font acheter des livres. Oh, il nous a dit qu'on pouvait aussi les acheter mais que pour son cours c'était pas nécessaire. Et il a mis une phrase au tableau, en latin, qui voulait dire "celui qui écrit lit deux fois"...

Je l'écoutais parler, et j'étais heureux. Je savais bien qu'Aurélie serait naturellement intéressée par la philosophie. Mais l'école peut être tellement destructrice... Oui, je suis heureux : son premier contact avec la philosophie scolaire s'est bien passé...

Ma grande deuxième, Marie-Élaine, entame demain sa carrière d'enseignante. À une école privée. J'ai bien l'impression qu'elle risque de bien s'y plaire, en enseignement. Surtout qu'elle pourra sans doute devenir le poteau-TIC de son école. Sur les traces de son père, quoi !!!
C'est beau de voir l'amorce d'une carrière. L'enthousiasme. Les projets.

Mais c'est surtout beau de voir ses enfants heureuses.

dimanche 22 août 2004

Ah ! ces médailles...

L'occasion du gain est brève.
Martial, Épigrammes, VIII, ix (env. 90).

Imagerie 6


« Je me suis donc endormi ? »
demanda le policier à la servante.

Image numérisée de Les Compagnons de l'Alliance de Jean Guétary, Alfred Mame et Fils, 1899

vendredi 13 août 2004

A-t-il raison?

I am convinced that by the year 2005 Americans will spend more hours on the Internet (or whatever it is called) than watching network television.
Nicholas Negroponte, Being digital, p.58, Éd. Vintage, 1995

mercredi 11 août 2004

Le vol des cigognes

J'ai lu ce polar de Jean-Christophe Grangé suite à un commentaire enthousiaste de ma nièce Sabine. C'est écrit sous forme de best-sellers c'est-à-dire qu'à la fin de chaque chapitre, on n'a quasi pas le choix de poursuivre sa lecture. Ce qui me dérange le plus dans ce livre, c'est peut-être le peu de vraisemblance. Deux exemples : Louis, le héros du livre, à son premier assassinat, ne réagit presque pas. Or, c'est un type très rangé qui a passé sa vie à l'école  : il en sort tout juste, à 32 ans, avec un doctorat en histoire... Ailleurs, Interpol lui permet de rencontrer Sarah en prison alors que l'organisme n'a absolument aucune raison logique de donner cette permission. Comme si un petit ornithologue amateur pouvait dicter ses exigences à Interpol ! L'histoire est certainement bien racontée quoiqu'assez prévisible. Lirais-je un second livre de cet auteur - j'ai en réserve Les rivières pourpres ? Certainement ! Le vol des cigognes est le premier livre de Grangé, et j'ai bien l'impression que l'auteur ne peut que s'améliorer. Ce fut une belle lecture d'été.

Le Menteur


Ne vois-tu rien en moi qui sente l'écolier ?
Le Menteur, Acte 1, Scène 1

Image numérisée de Théâtre complet de Pierre Corneille, éd. RVG, 1986

Albalat on line

Je découvre à l'instant que le livre complet Comment il ne faut pas écrire est disponible en format doc ici

La Rochefoucauld

Presque toutes les maximes de La Rochefoucauld sont empruntées à d'autres auteurs. Le plagiat est perpétuel. Celle que Sainte-Beuve admirait par-dessus tout : « Le soleil et la mort ne se peuvent regarder fixement », a été découverte mot pour mot par M. Maurevert dans une nouvelle de Cervantès1.
La Rochefoucauld soumettait ses maximes à ses amis ; on les revoyait ensemble ; il les polissait ensuite à son aise. Ce qui fait la beauté de son livre, c'est la force d'observation, la parti pris féroce et surtout la densité du style.
La Rochefoucauld a réécrit son ouvrage plus de trente fois ; et cependant, malgré ses qualités prodigieuses, que de pensées fuyantes ou subtiles dans ce traité d'égoïsme, que n'aimaient ni Rousseau, ni Voltaire, et qui ne montre qu'un côté du coeur humain !
Antoire Albalat, Comment il ne faut pas écrire, p. 161, Plon 1921

1L'Éclaireur de Nice, 8 mai 1914

lundi 9 août 2004

Imagerie 5



Les infortunés furent explusés de leur
demeure mise à l'encan (p.338)

Images numérisées du Martyre du cœur, p.335.

dimanche 8 août 2004

Imagerie 4


Le Médecin malgré lui
Image numérisée de Œuvres complètes de Molière, Crémille 1971

Une bouteille dans l'océan

Je suis toujours surpris par les ramifications de l'Internet. Que peut bien donner une page de citations tirées de mes lectures ? En visitant le web ce matin, je suis tombé sur : COLLECTIF CONTRE LES ABUS DUS AUX PSYCHO-TECHNOLOGIES et, tout en bas, une citation de Thibon prise sur mon site. J'ai souri. La bouteille avait atteint une île !

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 >