Le rationnel, en effet, n'est que le relatif ; la raison se borne à mettre en relation des éléments irrationnels. Les mathématiques sont la seule science parfaite en tant qu'elles additionnent, retranchent, multiplient et divisent des nombres, mais non des choses réelles et massives ; c'est-à-dire, en tant que c'est la plus formelle des sciences. Qui est capable d'extraire la racine cubique d'un arbre, de ce frêne ?
Miguel de Unamuno, Le sentiment tragique de la vie, trad. Marcel Faure-Beaulieu, p.112, Idées/Gallimard n°68
P représente l'enseignant et E, l'élève.
Contexte : l'élève doit passer une heure en cours de récupération avec un enseignant car on a détecté qu'il avait un sérieux problème de compréhension de l'addition et de la soustraction chez les entiers.
P : On va commencer par faire un petit résumé de ce que sont les entiers.
E (haussant les épaules): Les nombres entiers ? Bof, ce sont les plus et les moins...
P (sentant qu'il aura du plaisir avec son élève) : Hum... En fait, c'est beaucoup plus simple que ça. Les nombres entiers représentent des quantités qui peuvent avoir un opposé. Par exemple, les couples (gagner, perdre), (avancer,reculer), (monter, descendre), (électron, positron)...
E (coupant l'enseignant) : C'est quoi un positron?
P (content de recevoir cette question) : En quelque sorte, c'est le contraire d'un électron. En fait, si tu colles un électron à un positron il en résultera, grosso modo, une annihilation. C'est comme s'ils disparaissaient. En réalité, il résulte de cet affrontement une espèce d'énergie radiante.
E (hésitant): L'antimatiere ?
P (de plus en plus heureux de travailler avec cet élève) : Exactement! Les nombres entiers sont là pour représenter, en quelque sorte, l'idée d'opposition. Pour bien illustrer la chose, je vais prendre un modèle qui devrait t'aider à comprendre comment tout cela fonctionne.
L'enseignant sortit son jeu de go contenant des pierres blanches et des pierres noires. Puis il lui expliqua :
P : Tu vois, on a ici une pierre blanche (B) et une pierre noire (N). On va considérer qu'elles représentent des unités d'opposition. Autrement dit, B et N s'annulent mutuellement. Cette annulation est un état que j'appellerai neutre et que je représenterai symboliquement par 0 (zéro).
E : Donc
un B plus un N donne 0.
P : Pas tout à fait. Quand tu as dit un B
PLUS un N, tu sous-entends la notion d'addition. Or, on n'en a pas encore parlé. La seule définition que tu dois retenir,
et c'est bien là une définition, c'est qu'un B
ET un N s'annulent mutuellement. C'est tout. Par exemple, si on a deux B et deux N, on aura l'équivalent d'un état neutre. Si on a 1000 B et 1000 N , on aura aussi l'équivalent d'un état neutre.
E : Ouais, c'est simple.
P (souriant) : Simple, oui. Mais pas simpliste. Je suis presque convaincu que dans quelques minutes, tu auras oublié cette
simple définition.
E (sourcillant) : Oublié? Vous me mettez au défi?
P : On en reparlera le moment venu... En attendant peux-tu me dire ce qu'est la définition d'une addition. Par exemple, que veux dire 3 + 5 ? Attention, je ne te parle pas ici de l'addition chez les entiers mais bien de l'addition chez les nombres naturels.
E : 8. 3+5, c'est 8. C'est bien évident, non ?
P : Je ne te demande pas la réponse, mais de
m'expliquer ce que
signifie 3 + 5.
E : ???
P : Allons-y concrètement. Supposons que j'ai 3 pommes. 3 + 5 pourrait vouloir dire qu'on ajoute à ces 3 pommes, 5 pommes.
E : Oh! Bien sûr, c'est évident.
P : En fait, ce qui est important de comprendre dans l'addition, c'est que tu ne peux additionner que des nombres qui représentent une même idée. Par exemple, 3 + 5 pourrait aussi signifier
«ajouter 5 oranges à 3 pommes», mais dans ce cas on n'obtient ni 8 pommes, ni 8 oranges, mais bien 8 fruits. Autrement dit, le problème est «
ajouter 5 FRUITS à 3 FRUITS». Tout ça pour te dire que dans ce qui va suivre, je vais toujours tenir pour acquis qu'on a affaire à des représentants d'une même idée.
E : Ok, ça me va.
P : Bon ! On attaque le vif du sujet. D'abord, on va se donner une convention. Par exemple si j'ai 5 B, je vais symboliser la chose par (+5). Si j'ai 5 N, je vais plutôt utiliser (-5).
E : Donc, un
«plus» pour les B, et un
«moins» pour les N. Et les parenthèses?
P : Les parenthèses sont là pour indiquer que +5 forme un tout. De même pour -5. On pourrait les enlever, mais je tiens pour l'instant à ce qu'on les garde car on pourra plus facilement distinguer le symbole + qui signifie B du symbole + qui signifie l'addition.
L'enseignant se sentait d'attaque. Il voyait bien que son élève était attentif.
L'élève trouvait la leçon relativement plate jusqu'ici. Il n'avait pas vraiment l'impression d'avoir appris quelque chose de nouveau.
P : Bon, on va maintenant trouver un sens à l'opération addition chez les entiers.
L'enseignant prit 3 pierres blanches dans sa main.
P : Ajoute 5B.
L'élève prit 5 pierres blanches et les ajouta dans la main de l'enseignant.
P : Additionner, c'est ça : ajouter quelque chose à ce qui est déjà là!
E : C'est un peu simplet, votre affaire !
P (avec un grand sourire) : Pourtant, additionner est une opération assez complexe. Par exemple, 345 + 657 + 2302 demande quand même un certain effort pour trouver la réponse. Mais effectivement, l'idée même de l'addition n'est pas très compliquée à saisir. Donc, pour en revenir à notre problème, on pourrait le symboliser ainsi : (+3) + (+5). Note les symboles "+". Il y en a trois. Dans les parenthèses, ils signifient simplement qu'on considère des B. alors que celui du milieu correspond au symbole de l'addition. Il faut donc être très prudent lorsqu'on écrit une telle expression. Et la réponse est ...?
E : La réponse est 8.
P : Non.
E : ???
P : La réponse
N'EST PAS 8.
E (en fronçant les sourcils) : Oups ! 8 B ou, symboliquement (+8).
P : Voilà ! Continuons avec ce problème : ajoute 5N à 2N.
L'enseignant a mis 2 pierres noires dans sa main. En haussant les épaules, l'élève prit 5 pierres noires et les ajouta tout simplement.
E : Cela donne 7 N ou, symboliquement (-7).
P : Comment écrirais-tu le tout?
E : (-2) + (-5) = (-7).
P : Parfait. On va compliquer un peu la chose.
L'enseignant prit 2 B dans sa main.
P : Ajoute 5 N à 2 B.
E (en prenant 5 pierres noires et en les ajoutant dans la main de l'enseignant) : Franchement ! C'est pas plus compliqué.
P : Et ça donne?
E : ???
P : Tu te rappelles la définition des nombres entiers, n'est-ce pas?
E (semblant vivre une illumination) : Bien sûr !!!
Et il supprima de la main de l'enseignant 2 couples de pierres noires/blanches.
E : Et voilà, on a 3N soit (-3). Symboliquement, cela s'écrit : (+2) + (-5) = (-3).
P : Très bien ! D'après toi, si on ajoute 15 B à 10 N, qu'est-ce que cela donnerait?
L'élève prit une moue confiante et, après quelques secondes répondit :
E : Cela donne 5 B ou (+5).
P : Pourquoi?
E : ???
P : Dis-moi comment tu as fait dans ta tête pour arriver à ce résultat.
E : J'ai imaginé tout simplement un pot avec 15 pierres blanches et 10 pierres noires. Comme 1 B et 1 N s'éliminent, je peux donc annihiler 10 couples de B/N, et il me restera 5 B dans le pot.
L'enseignant était très heureux : il était convaincu que le concept d'addition était très bien entré dans la tête de son élève. Après l'avoir vérifié avec des exercices oraux, il passa au concept de la soustraction.
P : Bien. On va maintenant apprendre à soustraire. Additionner, c'est
AJOUTER des pierres d'une certaine couleur. Soustraire, c'est tout simplement les
ENLEVER.
L'enseignant prit 10 blanches dans sa main.
P : Enlève 7 B.
L'élève, qui commençait à s'habituer aux questions simplistes de son enseignant s'exécuta.
E : Et hop là ! il reste 3 B.
P : Effectivement. Symboliquement on a (+10) - (+7) = (+3). C'est un peu enfantin...
E : Je suis bien d'accord avec vous.
P (En prenant 10 N dans sa main) : Ok. Enlève 3 pierres noires.
E (en exécutant la consigne) : Vraiment, y'a rien là. Attendez, je vais vous écrire ce que cela représente symboliquement. (-10) - (-3) = (-7). C'est bizarre, quand je vois l'opération dans ma tête (avec les pierres) il me semble que c'est vraiment une opération niaiseuse. Pourtant, juste avant d'entrer ici, j'y comprenais rien à la soustraction.
P : Attends ! On n'a pas terminé.
Puis, il prit 5 B dans sa main.
P : Enlève 2 pierres noires.
E : ???
P (insistant) :
E N L È V E 2 pierres noires.
E : J'peux pas. Vous n'en avez pas dans votre main.
P (souriant) : Si, j'en ai
E (têtu) : Non, il n'y en a pas.
P (regardant l'élève droit dans les yeux) : Regarde comme il faut !
J'AI DES PIERRES NOIRES DANS MA MAIN.
L'élève, croyant que son professeur était en train de devenir fou, secoua la tête. Après quelques secondes, l'enseignant s'enfonça dans le dossier de sa chaise et lui dit :
P : Tu te rappelles au début de la leçon? Je t'avais dit que tu oublierais la définition des entiers. C'est justement ce que tu fais en ce moment. J'ai gagné mon pari.
Encore une fois, l'élève fronça les sourcils et ne comprenait pas ce qu'il se passait. L'enseignant ouvrit sa main qui contenait les 5 pierres blanches.
P : Regarde bien. Il y a dans cette main, une infinité de pierres noires.
MAIS TU NE LES VOIS PAS. Elles sont pourtant bien là.
Puisque l'élève ne semblait pas trop saisir les propos de l'enseignant, ce dernier prit un couple de pierres b/n et les déposa dans sa main.
P : Es-tu d'accord pour dire que 5 B, c'est comme 6 B et 1 N, puisque selon la définition des entiers...
E (en coupant l'enseignant) : Ça y est. Je viens de comprendre. C'est comme si vous ajoutiez des zéros. Ce qui dans le fond, ne change rien...
P : C'est ça. On a ce qu'on pourrait appeler des états équivalents. Donc, peux-tu enlever 2 N à mes 5 B?
E (fier de lui) : Bien sûr !
Et il ajoutant aux 5 B deux couples de (B/N). Puis, il prit les 2N. Il restait 7B dans sa main.
E : Symboliquement on a : (+5) - (-2) = (+7). Hé, hé, facile !!!
P : En effet, c'est pas si compliqué que ça. Encore une fois, j'aimerais que tu fasses bien la distinction entre l'opération soustraction symbolisée par un moins. Et le moins qui représente les pierres noires.
E (content de son jeu de mots) : Oui,oui, je vois bien la
différence.
P: Ok. Voyons comment tu vas résoudre celui-ci.
L'enseignant mit 5 pierres blanches dans sa main.
P: Enlève 8 pierres blanches.
E (ne trouvant pas le défi tellement difficile) : Bof ! Il suffit d'ajouter ... hum... trois couples B/N. Ainsi, je pourrai soustraire les 8 pierres blanches... Il me restera alors 3 pierres noires. Donc, (+5) - (+8) = (-3). C'est tout de même bizarre de voir apparaître des N alors qu'on enlève des B.
P : Oui. Je suis d'accord avec toi. Il y a comme un brin de magie là-dedans. Mais tout cela ne découle que de la définition, ou si tu veux, de la nature même des nombres entiers. Ils sont vraiment surprenants ! Bon, regarde ce problème.
Et l'enseignant, sur un bout de papier écrit : (-10) - (+1). D'après toi, qu'est-ce que cela donne?
E : Bon, j'ai 10 pierres noires. Je dois enlever une pierre blanche... Bien, il suffit que j'ajoute un seul couple B/N. Si j'enlève maintenant la pierre blanche, il me restera 11 N. Donc, la réponse est (-11).
En résolvant le problème, l'élève manipulait les pierres. C'est ainsi que l'enseignant posa encore quelques questions pour s'assurer que l'idée était bien entrée dans le cerveau de son élève. Puis, il lui demanda.
P : Que donne maintenant cette expression : (-142) - (+99)?
L'élève souriait. Les nombres étaient beaucoup plus gros mais il ne sentait plus la nécessité d'utiliser les pierres.
E : Hum... Je dois enlever les blanches, mais il n'y en a pas dans mes 142 N. Donc, je dois ajouter à ces 142N, 99 couples (B/N). Ainsi, en enlevant les 99 B, je me retrouve avec 99 N de plus, donc... 241 N. Ma réponse : (-241).
La cloche venait de sonner. L'enseignant était fier des progrès de l'élève.
Notes pédagogiques
- Il faut s'assurer que la notion d'addition chez les naturels est très bien comprise par l'élève. Dans le texte, l'enseignant devrait sans doute appuyer sur le fait qu'on ne peut additionner que des natures semblables (des pommes, des oranges, des fruits.)
- Le modèle pierre blanche, pierre noire est utile pour l'ensemble des opérations chez les entiers. Par exemple, pour la multiplication, voyez ce billet. Il peut aussi servir à la relation d'ordre. Il permet donc de garder une cohérence dans les explications. On voit souvent l'addition expliquée à partir d'une droite numérique ou comme des comptes bancaires avec un actif et un passif, etc. Pour la soustraction, on noie l'élève dans une règle (soustraire c'est additionner l'opposé!!!!) sortie du chapeau magique de l'enseignant.
- Il est très important de conserver les parenthèses lorsqu'on initie les élèves aux nombres entiers. Quand on sera assuré que le concept est bien compris, on pourra lui suggérer de supprimer ces parenthèses.
- Énoncer des règles du genre «si on additionne un entier positif avec un entier négatif, on doit soustraire le plus grand du plus petit et donner le signe du plus grand», c'est prendre l'élève pour un idiot. Il faut que l'élève COMPRENNE les opérations sur les entiers. L'élève qui aura compris le principe de l'addition se fera ses propres règles, s'il en sent le besoin.
- Laissez tout le temps nécessaire aux élèves de manipuler les pierres. Il faut qu'ils sentent les opérations. Je suggère de toujours associer les manipulations à la représentation symbolique. Éventuellement cette seule représentation symbolique sera suffisante. Encore une fois : laissez le temps aux élèves de manipuler les pierres. Et je répète : laissez le temps aux élèves de manipuler les pierres.