Jobineries

Blogue de Gilles G. Jobin, Gatineau, Québec.

lundi 10 octobre 2005

Poli-TIC

La politique est un chapitre de la météorologie.
La météorologie est la science des courants d'air.

Édouard Herriot (Notes et Maximes, p.25, Hachette, 1961)


J'ai récemment retiré un billet que j'avais publié sur Recit.org. Dans ce billet, j'émettais l'opinion que le discours prononcé à l'ouverture de notre session de travail par le sous-ministre adjoint à l'éducation était «très ordinaire». Suite à sa parution, quelques personnes m'ont signalé leurs malaises par rapport à mon propos. En effet, des commentaires du genre «on ne mord pas la main qui nous nourrit» ou «puisque c'est publié sur le blogue DU Récit, cela donne une mauvaise image du Récit» m'ont été gentiment mentionnés.

Si j'avais laissé le billet sur le blogue, la polémique qu'il aurait pu susciter aurait été sans doute vaine, stérile et inutile. Je fais partie de ceux qui croient que les politiciens sont d'abord à notre service, et non au service de leur Power trip. En ce sens, dire à un politicien que son discours est plutôt plate, c'est lui dire qu'il devrait se forcer pour nous donner un peu plus de viande. Je suis tanné des lieux communs qu'on nous dessert à tour de bras.

Mais de toute évidence, ma vision de l'homme politique n'est pas partagée par une partie de mes confrères et consoeurs du Récit. Et je considère que l'harmonie du groupe est beaucoup plus importante que mon simple point de vue, surtout si ce point de vue est vaguement périphérique à mon travail. Pour bien des gens, il faut user de stratégies avec les politiciens si on veut obtenir quoi que ce soit d'important pour nous. Mais comme je suis allergique à la manipulation, j'ai tendance à me tenir loin des personnes qui en vivent et je me colle plutôt aux gens qui semblent valoriser une certaine profondeur et une certaine rigueur de la pensée. Je ne dis pas que tous les hommes politiques sont vides, je dis seulement qu'ils montrent très peu souvent leur potentiel intellectuel hors les normes établies. J'aimerais du leadership, de l'originalité, du risque, de la transparence. En général, nous n'avons que de l'image, des idées creuses et ramanchées et du conservatisme.

Conclusion : je dois me tenir loin de la politique.

jeudi 6 octobre 2005

New Nothomb

Certains décrivent « Acide sulfurique » comme un roman-scandale ? C'est plutôt l'exercice de rentrée d'une petite dégoûtée qui cherche sa fessée.
Marc Lambron, commentant ici le roman de la rentrée d'Amélie Nothomb.

dimanche 2 octobre 2005

Kirtas Technologies

J'en veux un ! Mais ça doit coûter un bras...

jeudi 29 septembre 2005

Négo

Rencontre syndicale hier soir. Je n'ai pu m'empêcher de soumettre mon moyen de pression aux animateurs.

Je crois que ce qui fait le plus mal au gouvernement, c'est lorsqu'on s'attaque à son image. Car, à mon sens, ces hommes et femmes politiques n'existent que par l'image. Donc, il faut s'attaquer à celle-ci, la rendre la plus noire possible si effectivement elle est noire.

Le contrat de travail est échu depuis quelques années. Et là, on me répond que les parties se rencontrent une fois par deux semaines (diable, que font-ils le restant du temps?) et nos négociateurs se font dire de revenir dans deux semaines, car les nogiciateurs du gouvernement n'ont pas le mandat de négocier, c'est-à-dire, ne peuvent rien proposer d'autres que ce qui est sur la table depuis deux ans déjà.

Il faut jouer sur cette idiotie. Dire à la population : «Voyez ! le gouvernement paye des fonctionnaires à ne rien faire depuis deux ans car ils répètent toujours la même chose alors qu'ils devraient être payés pour négocier. Ce gouvernement bousille vos taxes en embauchant des fonctionnaires qui ne savent pas négocier alors que c'est leur principal travail. Ces fonctionnaires nous disent qu'ils n'ont aucune marge de manoeuvre. Pourquoi alors les garde-t-on sur le payrol? Le gouvernement devrait le foutre à la porte au lieu de les payer à ne rien faire.»

Et puis, je crois encore qu'il faut rendre public tout ce qui se dit sur la table. Que ce soit par des documents vidéo (enregistrement des séances de négos) ou par les transcriptions complètes des échanges. Si c'est par des transcriptions, on sélectionne les parties les plus juteuses, on convoque une conférence de presse et on lance le tout à population. Comme ça, on laisse cette dernière se faire sa propre tête sur les allégations de mauvaise foi, de part et d'autre, des parties. On n'est pas trop porté à élire des gens de mauvaise foi...

Et je ne pense pas qu'un gouvernement aimerait se faire prendre en flagrant délit d'imposteur. On aurait peut-être le droit alors à de véritables négociations.

Les moyens de pression suggérés (la grève, port du noir, envoi d'un bulletin à Charest, etc.) sont enfantillages. Il faut attaquer, et très agressivement, l'image même des politiciens en prouvant que ces politiciens/administrateurs sont incompétents, car ils payent des employés, avec notre argent, à ne rien faire.

lundi 26 septembre 2005

Web 2.0

Je n'ai pas suivi tout ce qui entoure la nouvelle version du web, appelée WEB 2.0. Mais pour vous donner une petite idée sur l'avenir de notre amour, double-cliquez sur un mot de ce billet (ou de tout autre billet).

Pour installer le tout sur votre blogue (ou votre page web) rien de plus facile : C'est Alexandria, c'est par ici !

L'évolution

Ce matin, cette lecture m'a bien fait rire.

dimanche 25 septembre 2005

La perte de l'image

Il est impossible de dessiner un atome : d'abord, son noyau vibrionnant ne ressemble en rien à l'espèce de framboise statique et bicolore qui sert souvent à le représenter dans les manuels scolaires (avec les protons peints en rouge et les neutrons en bleu); ensuite, ces électrons n'ont pas les trajectoires que les dessins leur accordent trop fréquemment; ils ne ressemblent pas non plus aux vagues nuages diffus par lesquels certains autres manuels, en apparence plus scrupuleux, tentent au contraire de faire sentir qu'ils n'ont pas vraiment de trajectoire. Car les électrons ne sont pas des ectoplasmes délocalisés ! [...] Les nuages électroniques ne représentent donc nullement les électrons, ni leur forme ni le prétendu «flou» de leur trajectoire: ils ne font que décrire les régions de l'espace dans lesquelles la probabilité de les détecter est statistiquement importante.
Mais alors, que veut dire comprendre quand il n'y a plus d'images justes? La disparition des poissons pilotes de l'intelligibilité que sont les images, les illustrations ou les schémas, engendre une frustration sceptique chez ceux qui ont besoin de voir pour croire. Mais c'est au contraire de la fascination qu'elle fait naître chez ceux qui s'émerveillent de voir l'intelligence capable de démentir puis de dépasser ce que les images indiquent ou traduisent. Car perdre l'image n'est pas tout perdre. [...] quand il s'agit de construire les concepts aptes à rendre compte de la réalité physique, l'intelligence vaut mieux que le bon sens. Car la pensée, même privée de guide naturel et de catégories a priori demeure capable d'invention et parvient à éviter les pièges tendus par l'immédiateté des choses en élaborant des stratégies de détour. Le sens commun, lui, ne cesse pas de nous faire dire que la Terre est plate.
É Klein, pages 133 à 135

Dicton russe

« Le premier enfant est la dernière poupée et le premier petit-enfant est le premier enfant. »
- Alexandra Marinina


samedi 24 septembre 2005

1$ ÷ ½

Dans l'un des très nombreux commentaires au billet Défi à Découverte, M. Lyons demande comment faire pour expliquer le problème donné en titre à de jeunes enfants. Il nous donne aussi deux cas concrets de cet énoncé. Je reviens ici sur ces exemples, car, à mon avis, ils ne rendent pas vraiment justice à l'énoncé.

Exemple 1 : «[...] les postes d'essence vendront leur précieux liquide au demi-litre et que 1$ pour 1 demi-litre semblera moins dispendieux que 2$ du litre (ce qui se calcule en effectuant : 1$ ÷ ½ = 2$).»

En fait, la question ici est si ½ litre vaut 1 $, que vaut 1 litre?

Algébriquement, on a : Soit x la valeur d'un litre, alors ½x = 1$ (un demi litre vaut 1$). Évidemment, personne à part un prof de maths ou, comme moi, un ex-prof de maths, ne pensera à mettre ce problème en équation.

La solution est donc : x = 1$ ÷ ½ = 2$. Cependant, dans la tête de la majorité des gens, à mon avis, on ne resout pas du tout ce problème de cette manière. On fait plutôt :

2 · ½x = 2 · 1$ donc x = 2$. Ici, il n'y a eu AUCUNE division !!! Posez ce problème autour de vous et je suis à peu près convaincu qu'on vous répondra tous par «Ben voyons, ça va coûter 2 fois 1 $.» Il m'étonnerait grandement qu'un seul de vos répondants parle de DIVISION!

Exemple 2 : «[...] j'apporte seulement 20$, ce qui risque de ne représenter que la moitié du prix de ma commande (Je prévois que cette commande devrait coûter 20$ ÷ ½ = 40$).»

C'est le même problème que l'exemple 1, mais cette fois, on remplace le mot demi par moitié. Algébriquement : 20 $ = x/2 (la moitié de x). Encore une fois, je pense que toute personne non-mathématicienne le résout non pas en divisant 20 par ½, mais bien à multipliant 20 par 2. On arguera que cela revient au même. Mais je crois que pour appuyer sur la notion de division, on doit trouver des problèmes qui appellent d'abord ce concept dans sa résolution.

Les exemples cités ne sont pas, d'après moi, des exemples concrets de 1$ ÷ ½ mais plutôt la manière d'écrire une résolution d'une équation du premier degré de type ½x = 1. Didactiquement parlant, je crois que la question qui'il faut se poser est la suivante : peut-on expliquer l'opération division sans avoir besoin du concept de la multiplication? Autrement dit, peut-on illustrer la force de la division pour ce qu'elle vaut en elle-même?

Voyons chez les nombres naturels.

12 ÷ 4. On s'entend généralement sur deux interprétations ici :

1. La division contenance : Combien de paquets de 4 pommes peut-on faire avec 12 pommes. Il faut apprendre à l'enfant que le symbole ÷ est bien pratique pour illustrer l'idée de contenance. Remarquez aussi que les unités du dividende et du diviseur sont les mêmes. La réponse est un nombre de paquets.

2. La division partage : Prenons un cas classique. On achète un cadeau de 100$ à un ami et on se partage le coût à 8 personnes. La solution arithmétique appelle clairement une division. On ne pensera généralement pas «8 fois quoi donne 100$», mais plutôt «100 divisé par 8 donne le montant que je dois payer.» La réponse est un coût par personne. À mon avis, ce genre de problème fait partie de l'univers de la division.

La beauté de la division chez les naturels est qu'elle peut se percevoir facilement comme une opération à part entière et qui n'a pas vraiment besoin de l'opération multiplication pour exister, car la symbolique de la division représente ces idées de partage ou de contenance.

C'est seulement par la suite qu'un enfant pourra «découvrir» que la division et la multiplication sont deux visions d'une même réalité conceptuelle, mais avec de jolies exceptions (par exemple 8x0 = 0, mais 0÷0...) C'est un peu comme cette illusion d'optique où on voit parfois une vielle dame, parfois une jeune fille. L'enfant apprendra à «voir» une division dans la multiplication et une multiplication dans la division.

Peut-on illustrer purement (c'est-à-dire sans avoir à l'esprit l'opération inverse de multiplication) la division de fractions? Y'a-t-il des situations vraiment concrètes, comme celle du prix du cadeau qu'on se partage) qui force naturellement l'utilisation de la division par une fraction? En cinquante ans, dans ma vie de tous les jours, je n'ai jamais rencontré ce genre de problèmes... Même si j'en avais rencontré une ou deux fois, cela mérite-t-il qu'on s'y attarde à l'école? Si oui, pourquoi? (Ma réponse, qui est positive, fera sans doute l'objet d'un futur billet. En attendant, pourquoi ne pas m'indiquer la vôtre?)

Par ailleurs, je crois qu'il est judicieux d'imprégner les enfants dans le langage «fractionnaire» (moitié, demi, tiers, etc.) et je crois qu'il réussira à peu près sans peine à trouver plein de réponses à des questions du genre «Papa te donne 5$ mais ça correspond à la moitié du jeu que tu veux acheter. Combien coûte le jeu?» Mais il m'étonnerait grandement qu'il fasse dans sa tête l'opération division pour résoudre ce problème. Comme la majorité d'entre nous, il multipliera simplement pas deux.

Cela me rappelle le texte ci-dessous que vous trouverez dans le merveilleux petit livre de Normand Baillargeon publié chez Lux «Petit cours d'autodéfense intellectuelle».

«On vous montre, déposée sur une talbe, quatre cartes dont les faces visibles indiquent :
D - F - 3 - 7
Chaque carte présente sur une face une lettre et sur l'autre face un chiffre. On vous demande ensuite quelles cartes vous devrez retrouner pour vérifier que la règle suivante a été respectée : si une carte présente un D sur une face, alors elle doit avoir un 3 sur son autre face.
L'expérience, qui a fréquemment été réalisée et avec un grand nombre de sujets, montre qu'à moins d'avoir fait des mathématiques un peu avancées, de la logique ou de la programmation, la plupart des gens répondent D et 3, soit la première et la troisième carte. Ce n'est pas exact : il faut retourner la première et la dernière carte.
La premère parce qu'il pourrait y avoir autre chose qu'un 3 sur l'autre face, ce qui infirmerait l'hypothèse. [...] De même, c'est pour confirmer l'hypothèse qu'on a retourné la troisième carte (le 3) : on cherchait un D de l'autre côté. Mais pensez-y: cela ne changerait rien quoi qu'il y ait de l'autre côté. L'hypothèse dit que s'il y a un D, alors il y a un 3; elle ne dit pas que s'il y a un3, il doit y avoir un D!
La quatrième carte est cruciale. S'il devait y avoir un D sur l'autre face, notre hypothèse serait réfutée. [...]
Ce petit test amusant a été repris par des chercheurs en psychologie évolutionniste pour montrer que, si l'on raisonne sur un exemple mettant en jeu la détec­tion de tricheurs, le raisonnement devient beaucoup plus facile. Voyons de quoi il retourne pour conclure sur ce sujet.
On vous explique que vous travaillez comme res­ponsable de la sécurité dans un bar. Ce bar est acces­sible à des jeunes de moins de 18 ans et à des adultes. Cependant, les jeunes gens ne doivent absolument pas consommer d'alcool. Si un jeune de moins de 18 ans était surpris à en consommer dans le bar, celui-ci perdrait aussitôt son permis. Votre tâche, en tant que responsable de la sécurité du bar, est de vous assu­rer qu'aucun jeune n'y consomme d'alcool. Heureu­sement, chaque client circule en portant, bien visible, une carte : sur une des faces on trouve un chiffre, qui indique son âge; sur l'autre face, ce qu'il consomme.
Vous êtes dans le bar et vous remarquez les quatre cartes suivantes
Cola Bière 28 16
Quelles cartes retournerez-vous pour vous assurer que personne ne consomme d'alcool illégalement?
Notez que, bien qu'il soit facile et résolu par tout le monde, sur le plan formel, ce problème est exacte­ment le même que le précédent. » (pages 208-209)

mardi 20 septembre 2005

La pensée unique

La pensée unique c'est la répétition, entend-on dans cette chronique (7 minutes en format rm) de Michel Serres.

Lianes :
Le sens de l'info chez Radio-France.
Quelques citations tirées de mes lectures de Michel Serres.
Michel Serres à l'Encyclopédie de l'Agora.

vendredi 16 septembre 2005

WikiQuote

Il semble que Wikiquote, version française, soit menacé de disparition. C'est un site de citations français qui forcerait la fermeture pour cause de plagiat.

En ce qui me concerne, je sais que plusieurs de «mes» citations se retrouvent sur Wikiquote (et sur bien d'autres sites français de citations!). Évidemment, c'est toujours un peu frustrant de voir qu'avec un simple copie-colle et un réarrangement mineur du fichier, on donne l'illusion d'avoir travaillé très fort et de passer pour un collaborateur à la connaissance universelle. Il reste que piller en tout ou en partie une base de données, c'est, à mon avis, répréhensible.

Je ne veux pas vraiment parler de cette question de plagiat, mais plutôt de ma décision, lors de la création de Wikiquote, de ne pas y participer.

D'abord, lorsque j'ai pris connaissance d'outils Wiki (bien avant Wikiquote), j'ai immédiatement pensé transférer toute ma base de données sous cette forme. Avec quelques scripts, cela eût été relativement simple à faire. Puis, je me suis rendu compte que la base perdrait de son efficacité. En effet, les pages wikis sont créées à la volée. Par exemple, sur un site de citations, il peut être intéressant d'avoir une page bonheur où toutes les citations faisant référence à ce thème s'y trouveraient. Prenons la citation de Beaumarchais : «L'amour n'est que le roman du coeur, c'est le plaisir qui en est l'histoire.» tirée du Mariage de Figaro. Pour que le wiki soit efficace, il faudrait que cette même citation se retrouve sur le thème «amour», «plaisir» et pourquoi pas, «coeur». Par ailleurs, on devrait aussi la trouver sous Beaumarchais et sous l'oeuvre Mariage de Figaro. C'est donc dire qu'en ajoutant cette citation, il faut penser à l'ajouter sur plusieurs pages wikis pour que l'internaute puisse tomber dessus selon sa propre recherche. Cela n'est vraiment pas pratique, et augmente immensément les risques de bruits autour de la citation. En effet, si un internaute qui veut bien contribuer au site décide de créer une nouvelle page wiki sur, par exemple, le mot roman et y inscrit cette citation sous cette forme : «L'amour n'est que le roman du coeur; c'est le plaisir qui en est l'histoire.» soit un point-virgule au lieu de la virgule, on se retrouve avec deux variantes de la citation. Qui dit vrai? Croyez moi, il est très très difficile de faire une citation exacte. Et, à cet effet, je crois qu'Au fil de mes lectures et Bribes sont les deux seuls sites fiables du web (toutes les langues confondues) où l'internaute peut toujours vérifier par lui-même la citation. J'ai trouvé énormément d'erreurs sur tous les autres sites à citations même ceux qui sont abondamment «sponsorisés ».

C'est donc pour cela que je crois qu'un Wiki n'est vraiment pas un bon outil pour un site à citations collaboratif.

Pour qu'un tel site fonctionne, il faudrait :
  1. Qu'un formulaire permette à l'internaute de soumettre une citation.
  2. Que les champs du formulaire soient rigoureusement remplis. Parmi ces champs, l'auteur, la référence exacte, le traducteur, la citation précise.
  3. Qu'une équipe de vérificateurs (des bibliothécaires?) puissent valider la citation avant de l'accepter sur le site.
Pour le reste, il suffit de faire un site comme n'importe quel site de citations sur la toile qui permet une recherche par auteur ou par mot-clé.

Une autre belle possibilité serait de mettre sur pied un équipe de volontaires qui entreraient les citations tirées de recueils qui sont maintenant du domaine public.

mardi 13 septembre 2005

Défi à Découverte

Il est rare qu'on entende parler des mathématiques au primaire à la télé. Dimanche dernier, on a eu droit à un petit 15 minutes avec M. Robert Lyons. Ce dernier a illustré que les enfants étaient capables de factoriser des trinômes. Je reviens sur ce problème car il cache selon moi d'énormes pièges. Comme on ne voyait pas la fin de la leçon de M. Lyons, il est difficile de porter un jugement sur l'efficacité de celle-ci.
Le problème

Les enfants devaient factoriser 6x2 + 5xy + y2.

Au tableau, on voyait 6 carrés, 5 bâtonnets et un petit cube. L'enseignant demandait aux élèves de faire un «plancher» rectangulaire et sans trou avec ces formes. (Désolé pour mon illustration : j'ai fait ça rapidement avec OpenOffice Draw.)

Après quelques essais, tous arrivaient à un résultat pouvant se traduire par «la réponse» (3x + y)(2x + y).

Clairement, le carré représentait le x·x. Le bâtonnet : x·y et M. Lyons avait choisi le cube comme représentant y2. Mais le plus dangereux est que cette représentation est ... incohérente : Pourquoi un cube pour représenter un carré ??? Je n'ai entendu aucun enfant poser la question. Il est vrai que pour la durée du reportage, ils ont certainement dû couper plusieurs interventions des élèves ce qui est bien dommage. En tout cas, j'aurais bien aimé entendre la réponse de M. Lyons.

Autre question. Pourquoi prendre un carré (physique) pour représenter x2 ? Tout le monde répondra par l'évidence même que x·x PEUT être représenté par un carré. Ah oui? En fait, un NOMBRE naturel carré peut être FIGURÉ (on appelle d'ailleurs cela un nombre figuré) sous une forme carrée. Par exemple, 16 est un nombre carré.

Il y aussi des nombres triangulaires (1, 3, 6, 10, etc.), pentagonaux, etc. desquels on peut trouver d'intéressantes propriétés.

Clairement on peut représenter x2 sous la forme d'un carré si on sait que x fait partie de l'ensemble des réels positifs non transcendants (par exemple pi2 ne peut pas se réprésenter sous forme d'un carré de pi sur pi car pi est transcendant.). Or, pour bien faire les choses, l'algèbre étant d'abord une généralisation utile, dans le trinôme de départ, x et y sont des nombres RÉELS (généralisation utile) et, donc, peuvent être entre autres négatifs ou transcendants. Quel sens aura alors ce carré physique si x est négatif? Et la factorisation est-elle toujours possible dans les cas où x ou y sont transcendants? L'image mentale d'un carré risque ici de nous amener une conclusion qui pourrait être fausse pour TOUS les nombres. D'accord, ce n'est pas le cas ici, mais il reste que cette image ne peut être utilisée comme preuve. Cette vision donne de la plausibilité à la réponse mais n'est en aucun point algébriquement et mathématiquement rigoureuse. La manipulation peut servir de support au raisonnement, mais elle ne le remplace pas. Encore une fois, le reportage ne montrait nulle part les questionnements soulevés par les élèves. L'objectivation était aussi absente du montage.

Par ailleurs, la traduction d'un nombre carré en surface peut aussi poser problème. 16 peut prendre la forme d'un carré, mais on ne parlera certainement pas ici de surface ! Or, le plancher, c'est d'abord une surface. Mais j'ai déjà parlé de ce piège dans un autre billet.

L'idée de factoriser «physiquement» est riche et vraiment intéressante. On voit la solution apparaître sous nos yeux et on a l'impression que l'algèbre, c'est pas si compliqué après tout. Mais pour ne pas créer de fausses représentations dans l'esprit des élèves, il faut porter énormément attention sur ce que les enfants ont réellement compris. Et s'assurer que malgré la simplicité de l'algèbre, l'élève sache bien que ce n'est tout de même pas une matière simpliste.

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 >