La solution d'Andréanne (voir mon billet précédent) est intéressante. Si un élève arrivait avec ce raisonnement, j'en profiterais pour parler « paradoxe ».

- Savez vous que 0,9999.... est, en réalité, 1 ?
La discussion serait alors lancée :
- Ben non, voyons, car il reste toujours un petit quelque chose pour atteindre 1.
- Non, je vous le dis, 0,9999...=1
- Vous êtes fou. 0,999... est très près de 1, mais ce n'est pas 1.
Sourire sur la figure du prof : enfin l'occasion de maïeutique.
- Bon, êtes-vous d'accord si j'écris x = 0,999....
- Bof! ce n'est qu'appeler 0,9999... "x". Je suis d'accord avec votre définition.
- Hum... dans ce cas, êtes-vous d'accord que 10x donne 9,99999....
- Bien sûr puisqu'il s'agit de 10 fois 0,9999... ce qui évidemment donne 9,9999...
Le fébrilité monte chez l'enseignant.
- Ok. D'après vous, 10x - x, ça donne combien?
- Si j'enlève 1x à 10x, cela donne 9x.
- Mais 10x - x, c'est aussi, selon notre définition, 9,99999... - 0,99999. Or, d'après vous, que donne : 9,9999... - 0,9999
- Hum, d'après moi, ça donne 9 puisque la partie décimale est identique chez les deux nombres. C'est comme si on faisait 9 - 0 !
Le prof est triomphant.
- Bien voilà pourquoi 0,9999... = 1
- ???
- Bien sûr ! Vous venez de convenir que 9x = 9. Donc x = 1. Or au début de la discussion, j'ai posé x=0,9999.... CQFD !!!